Not everyone is convinced, however.
Voyager lead scientist Edward Stone, now retired from NASA's Jet Propulsion Laboratory in Pasadena, California, said Swisdak's research is interesting but different computer models are portraying different scenarios to explain the Voyager data.
"We know where Voyager is in terms of distance and we know what it is observing. The challenge is relating that to these complex models of the interaction between the interstellar medium and the heliosphere," Stone said, referring to the bubble of space that falls under the sun's influence.
Stone and other scientists believe Voyager is in a previously unknown region, dubbed a "magnetic highway," that exists between the heliosphere and interstellar space.
Voyager 1 and a sister probe, Voyager 2, were launched in 1977 to study the outer planets. Voyager 1 is now about 120 times farther away from the sun than Earth. Voyager 2 is heading out of the solar system in a different direction.
The probes are powered by the slow decay of radioactive plutonium. Voyager 1 will begin running out of energy for its science instruments in 2020. By 2025, it will be completely out of power.
If Swisdak and colleagues are correct, Voyager 1's magnetic field readings will stay pretty much the same throughout the remainder of its mission.
"If they see a strong shift in the magnetic field, a big jump, then that means that what we've outlined can't be correct," Swisdak said.
"I'm perfectly willing to be proven wrong here and if I were, that would be kind of cool. But it agrees with all the data that we have so far," he added.
More evidence may come when Voyager 2 crosses the solar system's boundary as well.
The research appears in The Astrophysical Journal Letters.
(Editing by Kevin Gray and Bill Trott)
- Link this
- Share this
- Digg this
- Email
- Reprints
0 comments:
Post a Comment