That may have happened about the time of z8_GND_5296's existence.
The galaxy, which is about a billion times as massive as the sun, has two unusual characteristics, which may be a factor in why it is visible, while potential sister galaxies are not.
First, z8_GND_5296 is forming stars at a very fast pace, pumping out about 100 times more stars than the Milky Way galaxy, so it may be brighter than the other candidate galaxies.
Second, it contains a surprisingly high percentage of elements heavier than hydrogen and helium.
Those elements are forged by nuclear fusion inside stars, so either the galaxy contains the exploded remains of lots of massive stars or it formed in a region of space that had been previously seeded with the remnants of a prior generation of stars, scientists said.
"It could be that this one galaxy lives in an over-dense region of (ionized hydrogen) so we can see it ... but that's a little bit of conjecture. For all we know these other galaxies have just a lot more hydrogen gas within the galaxies themselves and that's why we can't see them," Finkelstein said.
He and colleagues hope to conduct a wider survey for ancient galaxies with Hubble, but more details about z8_GND_5296 will likely have to wait until NASA launches its successor observatory, the James Webb Space Telescope, targeted for launch in 2018.
The research appears this week in the journal Nature.
(Reporting by Irene Klotz; Editing by Jane Sutton, David Brunnstrom and Tim Dobbyn)
- Link this
- Share this
- Digg this
- Email
- Reprints
0 comments:
Post a Comment