"As for other Asian countries, we will get them to put the gene into their local varieties through conventional breeding," said Heuer, adding that this would take about 4-5 years.
By using conventional breeding techniques, in this case, cross-pollination, there are no issues related to genetic modification. Food safety concerns and regulatory hurdles for transgenic rice -- where a gene is physically inserted into plant DNA in a laboratory -- can translate into years or even decades of testing before the strain reaches markets
The gene, PSTOL1, allows rice crops to thrive in soil that has low levels of phosphorus, a nutrient that promotes root growth, winter hardiness and hastens maturity. Plants deficient in phosphorus are often stunted.
"Fifty percent of world's arable land is too low in phosphorus. It's not like if you have this gene that the plants don't need phosphorus anymore," said Heuer.
"They (rice plants with the gene) may be able to exploit the soil a little better so the harvest is better. They may make better use of fertilizer because they can take it up more efficiently ... If you have a bigger root system, then the plant can take it up better and they can have better access to the patches where the phosphorus is."
(Editing by Chris Lewis)
- Link this
- Share this
- Digg this
- Email
- Reprints
0 comments:
Post a Comment